Информационная поддержка школьников и студентов
Поиск по сайту

Что такое уравнение диссоциации. Теория электролитической диссоциации. Электролитические диссоциация и ассоциация

Теория
электролитической
диссоциации

Цели. Сформировать у учащихся понятие «электролитическая диссоциация» на основе атомно-молекулярного учения, теории электролитической диссоциации С.Аррениуса и гидратной теории растворов Д.И.Менделеева. Вскрыть причину электропроводности растворов, обсудить значение и применение теории.
Оборудование и реактивы. Пробирки, два мерных цилиндра, пипетки, прибор для проверки электрической проводимости растворов, стаканы, стеклянные палочки;
вода, концентрированные серная и уксусная кислоты, твердые гидроксид натрия, хлорид натрия, сульфат меди(II), 100 мл раствора метилоранжа в ацетоне, растворы сульфата меди(II), хлорида натрия, гидроксида кальция, нитрата бария, хлорида бария, нитрата серебра, соляной кислоты, карбоната натрия, хлорида магния, хлорида алюминия, цинк гранулированный, железо – порошок, алюминий гранулированный.

План изложения темы

  • Свойства водных и неводных растворов различных классов неорганических соединений.
  • Растворение в воде с точки зрения электронной теории.
  • Диссоциация электролитов в растворе.
  • Степень электролитической диссоциации. Слабые и сильные электролиты.

ХОД УРОКА

Учитель. Известно ли вам, что вещества растворяются не только в воде, но и в других растворителях? Если да, то приведите примеры. (Учащиеся приводят примеры растворения веществ.)
Выясним, нужен ли растворитель для протекания реакции и важна ли в этом случае природа растворителя. Возьмем концентрированную серную кислоту и опустим в нее цинк. Произойдет ли реакция? (Проводит лабораторный опыт.)
Ученик. Цинк реагирует с концентрированной серной кислотой при нагревании. При этом выделяется газ SO 2 (пишут на доске уравнение реакции):

Учитель. Выделяется ли водород? А теперь перельем содержимое пробирки (из опыта) в пробирку с водой, очень осторожно. Реакция пошла, выделяется много тепла. Обратите внимание, без воды реакция почти не шла, хотя вода при обычных условиях не взаимодействует с цинком.
Проделаем еще один опыт. Смешаем сначала твердые вещества: гидроксид натрия и сульфат меди(II), а затем их растворы. Реакция между твердыми реагентами не происходит, а в растворе образуется голубой осадок. Запишите в тетрадях уравнение химической реакции:

2NaOH + CuSO 4 = Cu(OH) 2 + Na 2 SO 4 .

Из результатов опытов сделаем вывод, что вода в химических реакциях вовсе не пассивная среда. Под ее влиянием вещества испытывают изменения. Вода заставляет электролиты распадаться на ионы.
Рассмотрим процесс растворения электролитов в воде. Для этого придется вспомнить, что такое валентность и какие виды химической связи вам известны.

Ученики отвечают на поставленные вопросы. При рассмотрении ионной связи акцентируем внимание на модели кристаллической решетки хлорида натрия. Ковалентную полярную связь повторяем на примере строения молекул воды.
Учитель. В целом молекула воды не заряжена. Но внутри молекулы Н 2 О атомы водорода и кислорода располагаются так, что положительные и отрицательные заряды находятся в противоположных концах молекулы (рис. 1). Поэтому молекула воды представляет собой диполь.

Механизм электролитической диссоциации NaCl при растворении поваренной соли в воде состоит в последовательном отщеплении ионов натрия и хлора полярными молекулами воды. Вслед за переходом ионов Na + и Сl – из кристалла в раствор происходит образование гидратов этих ионов. (Далее веду объяснение по рисунку (рис. 2, см. с. 36) учебника: Фельдман Ф.Г., Рудзитис Г.Е . Химия-9. М.: Просвещение, 1999, с. 4.) А как реагируют с молекулами воды полярные молекулы электролита? Рассмотрим это на примере соляной кислоты (рис. 3 ,
см. с. 36) .

При растворении в воде соляной кислоты (в молекулах HCl cвязь между атомами ковалентная сильнополярная) происходит изменение характера химической связи. Под влиянием полярных молекул воды ковалентная полярная связь превращается в ионную. Образовавшиеся ионы остаются связанными с молекулами воды – гидратированными. Если растворитель неводный, то ионы называют сольватированными.

Наличие ионов в растворах кислот, щелочей и солей можно доказать реакциями обмена. Проведем следующие опыты:

взаимодействие сульфата меди(II) c:
а) нитратом бария;
б) хлоридом бария;
в) гидроксидом натрия;
г) гидроксидом кальция;

взаимодействие нитрата серебра с:
д) соляной кислотой;
е) хлоридом натрия.

Запишем уравнения химических реакций:

а) СuSO 4 + Ba(NO 3) 2 = Cu(NO 3) 2 + BaSO 4 ;

б) СuSO 4 + BaСl 2 = CuCl 2 + BaSO 4 ;

в) СuSO 4 + 2NaOH = Na 2 SO 4 + Cu(OH) 2 ;

г) СuSO 4 + Сa(OH) 2 = CaSO 4 + Cu(OH) 2 ;

д) AgNO 3 + HCl = HNO 3 + AgCl;

е) AgNO 3 + NaCl = NaNO 3 + AgCl.

На основании этих реакций можно сделать следующие выводы:
1) ионы металлов, гидроксильные группы и кислотные остатки реагируют в водных растворах как самостоятельно существующие частицы;
2) гидроксильные группы, кислотные остатки, атомы водорода кислот и атомы металлов солей являются теми электрически заряженными частицами, которые находятся в растворах кислот, щелочей и солей.
Запишем определение понятия: «Электролитическая диссоциация – это процесс распада электролита на ионы при растворении его в воде или расплавлении».
Поскольку число молекул воды, которое присоединяют ионы, неизвестно, то процесс диссоциации кислоты, щелочей и солей упрощенно изображают так:

HCl = H + + Cl – ,

NaOH = Na + + OH – ,

NaCl = Na + + Cl – .

Многоосновные кислоты и кислые соли диссоциируют ступенчато. Чтобы показать неполную диссоциацию молекул и ионов, не относящихся к сильным электролитам, используют знак обратимости «». Например, для H 2 SO 4 и ее кислой соли NaHSO 4:

H 2 SO 4 = H + + ,

NaHSO 4 = Na + + ,

Cледует не допускать ошибок при написании уравнений диссоциации нерастворимых и малорастворимых веществ, которые практически не диссоциируют на ионы или диссоциируют в малой степени:

CaCO 3 нет диссоциации,

СaSO 4 Ca 2+ + .

Основные термины, рассматриваемые в теории электролитической диссоциации, – это «электролиты» и «ионы».
Электролиты – это вещества, которые при растворении в воде или в расплавленном состоянии распадаются на ионы.
Ионы – это атомы или группы атомов, обладающие положительным (катионы ) или отрицательным (анионы ) зарядом. Ионы отличаются от атомов как по строению, так и по свойствам. Для примера сравним свойства атомарного и молекулярного хлора со свойствами иона. Рассмотрим их отношение к металлам, водороду, ионам серебра. Свойства металлического натрия сравним со свойствами ионов натрия.
(Ученики приводят примеры и рассказывают о свойствах атомов Cl, молекулы Cl 2 и ионов Сl – , а также о свойствах металлического Na и ионов Na + в составе солей.)

Общий и характерный признак ионов – наличие электрических зарядов. Ток проводят только те растворы, в которых содержатся ионы. Сравним электропроводность растворов кислот, щелочей, солей, сахара, спирта при помощи прибора для изучения электропроводности растворов (рис. 4). Мы видим, что диссоциация происходит не во всяком растворе. На основании ионной теории сформулируем новые определения кислот, оснований и солей как сложных веществ, образующих при диссоциации в воде особые ионы. При диссоциации кислот в качестве катионов отщепляются только ионы H + . При диссоциации оснований в качестве анионов отщепляется только ионы ОН – . Средние соли диссоциируют на катионы металлов и анионы кислотных остатков.
Попробуем ответить на такой вопрос: все ли электролиты в одинаковой степени распадаются на ионы? Сравним электропроводность концентрированных растворов хлорида натрия и уксусной кислоты. В растворе соли лампочка загорается ярко, а в уксусной кислоте – очень слабо. Разбавим растворы, добавив к ним воды. Электропроводность раствора хлорида натрия не изменяется, а в растворе уксусной кислоты лампочка горит ярче. Хлорид натрия даже в концентрированных растворах диссоциируют полностью. Молекулы же уксусной кислоты в концентрированных растворах почти не диссоциируют. При разбавлении уксусной кислоты число диссоциированных молекул увеличивается, равновесие диссоциации смещается вправо:

СН 3 СООН СН 3 СОО – + Н + .

Вещества с ионной кристаллической решеткой полностью диссоциируют на ионы в водных растворах. Отношение числа диссоциированных молекул (n) к общему числу молекул (N), находящихся в растворе, называют степенью диссоциации (). Величина может принимать значения от 0 (диссоциации нет) до 1 (диссоциация полная).
Общие свойства кислот обусловливаются наличием ионов
Н + в растворе. Активность кислоты (сильный или слабый электролит) зависит от концентрации ионов Н + в растворе.

Демонстрационный опыт. В два стакана нальем по 50 мл раствора метилоранжа в ацетоне. В первый стакан добавим 1–2 капли концентрированной серной кислоты, появляется малиновое окрашивание. Чтобы во втором стакане появилась такая же окраска, придется добавить в 10 раз больше (10–20 капель) уксусной кислоты, т.к. степень диссоциации кислоты CH 3 COOH незначительная и концентрация ионов водорода в ней невелика.
Вывод. Сила кислот и оснований определяется их степенью диссоциации.

Вы никогда не задумывались над тем, почему одни растворы проводят электричество, а другие — нет? Например, всем известно, что лучше не принимать ванну, одновременно укладывая волосы феном. Ведь вода - неплохой проводник электрического тока, и если работающий фен упадет в воду, то не избежать. На самом деле, вода — не такой уж и хороший проводник тока. Есть растворы, которые проводят электричество гораздо лучше. Такие вещества называют электролитами. К ним можно отнести кислоты, щелочи и растворимые в воде соли.

Электролиты — кто они?

Возникает вопрос: почему растворы одних веществ пропускают электричество, а других — нет? Все дело в заряженных частицах — катионах и анионах. При растворении в воде электролиты распадаются на ионы, которые при действии электрического тока движутся в заданном направлении. Положительно заряженные катионы движутся к отрицательному полюсу — катоду, а отрицательно заряженные анионы движутся к положительному полюсу — аноду. Процесс распада вещества на ионы при расплавлении или растворении в воде носит гордое название — электролитическая диссоциация.

Этот термин ввел в обращение шведский ученый С.Аррениус, когда изучал свойства растворов пропускать электричество. Для этого он замыкал через раствор какого-либо вещества и следил загорается лампочка при этом или нет. Если лампочка накаливания загорается — значит раствор проводит электричество, из чего следует вывод, что это вещество является электролитом. Если лампочка остается потухшей — то раствор не проводит электричество, следовательно это вещество — неэлектролит. К неэлетролитам относятся растворы сахара, спирта, глюкозы. А вот расторы поваренной соли, серной кислоты и прекрасно проводят электрический ток, следовательно в них протекает электролитическая диссоциация.

Как протекает диссоциация?

Впоследствии теорию электролитической диссоциации развили и дополнили русские ученые И.А. Каблуков и В.А. Кистяковский, применив к ее обоснованию химическую теорию растворов Д.И. Менделеева.

Эти ученые выяснили, что электролитическая диссоциация кислот, щелочей и солей протекает в следствие гидратации электролита, то есть его взаимодействия с молекулами воды. Ионы, катионы и анионы, образующиеся в результате этого процесса будут гидратированными, то есть связанными с молекулами воды, которые их окружают плотным кольцом. Их свойства значительно отличаются от негидратированных ионов.

Итак, в растворе нитрата стронция Sr(NO3)2, а также в растворах гидроксида цезия CsOH, протекает электролитическая диссоциация. Примеры этого процесса можно выразить следующими :

Sr(NO3)2 = Sr2+ + 2NO3 -,

т.е. при диссоциации одной молекулы нитрата стронция образуется один катион стронция и 2 нитрат-аниона;

CsOH = Cs+ + OH-,

т.е. при диссоциации одной молекулы гидроксида цезия образуется один катион цезия и один гидроксид-анион.

Электролитическая диссоциация кислот происходит аналогично. Для йодоводородной кислоты этот процесс можно выразить следующим уравнением:

т.е. при диссоциации одной молекулы йодоводородной кислоты образуется один катион водорода и один анион йода.

Механизм диссоциации.

Электролитическая диссоциация веществ-электролитов протекает в несколько стадий. Для веществ с ионным типом связи, таких как NaCl, NaOH этот процесс включает в себя три последовательных процесса:

    вначале молекулы воды, имеющие 2 разноименных полюса (положительный и отрицательный) и представляющие собой диполь, ориентируются у ионов кристалла. Положительным полюсом они прикрепляются к отрицательному иону кристалла, и наоборот, отрицательным полюсом — к положительному у ионов кристалла;

    затем происходит гидратация ионов кристалла диполями воды,

    и только после этого гидратированные ионы как бы расходятся в разные стороны и начинают двигаться в растворе или расплаве хаотично до тех пор, пока на них не подействуют электрическим полем.

    Для веществ с таких как HCl и другие кислоты, процесс диссоциации аналогичен, за исключением того, что на начальном этапе происходит переход ковалентной связи в ионную за счет действия диполей воды. Таковы основные моменты теории диссоциации веществ.

1. ЭЛЕКТРОЛИТЫ

1.1. Электролитическая диссоциация. Степень диссоциации. Сила электролитов

Согласно теории электролитической диссоциации, соли, кислоты, гидроксиды, растворяясь в воде, полностью или частично распадаются на самостоятельные частицы – ионы.

Процесс распада молекул веществ на ионы под действием полярных молекул растворителя называют электролитической диссоциацией . Вещества, диссоциирующие на ионы в растворах, называют электролитами. В результате раствор приобретает способность проводить электрический ток, т.к. в нем появляются подвижные носители электрического заряда. Согласно этой теории, при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называют катионами ; к ним относятся, например, ионы водорода и металлов. Отрицательно заряженные ионы называются анионами ; к ним принадлежат ионы кислотных остатков и гидроксид-ионы.

Для количественной характеристики процесса диссоциации введено понятие степени диссоциации. Степенью диссоциации электролита (α) называется отношение числа его молекул, распавшихся в данном растворе на ионы (n ), к общему числу его молекул в растворе (N ), или

α = .

Степень электролитической диссоциации принято выражать либо в долях единицы, либо в процентах.

Электролиты со степенью диссоциации больше 0,3 (30%) обычно называют сильными, со степенью диссоциации от 0,03 (3%) до 0,3 (30%)-средними, менее 0,03 (3%)-слабыми электролитами. Так, для 0,1 M раствора CH 3 COOH α = 0,013 (или 1,3 %). Следовательно, уксусная кислота является слабым электролитом. Степень диссоциации показывает, какая часть растворенных молекул вещества распалась на ионы. Степень электролитической диссоциации электролита в водных растворах зависит от природы электролита, его концентрации и температуры.

По своей природе электролиты можно условно разделить на две большие группы: сильные и слабые . Сильные электролиты диссоциируют практически полностью (α = 1).

К сильным электролитам относятся:

1) кислоты (H 2 SO 4 , HCl , HNO 3 , HBr , HI , HClO 4 , H М nO 4 );

2) основания – гидроксиды металлов первой группы главной подгруппы (щелочи) – LiOH , NaOH , KOH , RbOH , CsOH , а также гидроксиды щелочноземельных металлов – Ba (OH ) 2 , Ca (OH ) 2 , Sr (OH ) 2 ;.

3) соли, растворимые в воде (см. таблицу растворимости).

Слабые электролиты диссоциируют на ионы в очень малой степени, в растворах они находятся, в основном в недиссоциированном состоянии (в молекулярной форме). Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами.

К слабым электролитам относятся:

1) неорганические кислоты (H 2 CO 3 , H 2 S , HNO 2 , H 2 SO 3 , HCN , H 3 PO 4 , H 2 SiO 3 , HCNS , HСlO и др.);

2) вода (H 2 O );

3) гидроксид аммония (NH 4 OH );

4) большинство органических кислот

(например, уксусная CH 3 COOH, муравьиная HCOOH);

5) нерастворимые и малорастворимые соли и гидроксиды некоторых металлов (см. таблицу растворимости).

Процесс электролитической диссоциации изображают, пользуясь химическими уравнениями. Например, диссоциация соляной кислоты (НС l ) записывается следующим образом:

HCl → H + + Cl – .

Основания диссоциируют с образованием катионов металла и гидроксид-ионов. Например, диссоциация КОН

КОН → К + + ОН – .

Многоосновные кислоты, а также основания многовалентных металлов диссоциируют ступенчато. Например,

H 2 CO 3 H + + HCO 3 – ,

HCO 3 – H + + CO 3 2– .

Первое равновесие – диссоциация по первой ступени – характеризуется константой

.

Для диссоциации по второй ступени:

.

В случае угольной кислоты константы диссоциации имеют следующие значения: K I = 4,3 × 10 –7 , K II = 5,6 × 10 –11 . Для ступенчатой диссоциации всегда K I >K II >K III > ... , т.к. энергия, которую необходимо затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы.

Средние (нормальные) соли, растворимые в воде, диссоциируют с образованием положительно заряженных ионов металла и отрицательно заряженных ионов кислотного остатка

Ca(NO 3) 2 → Ca 2+ + 2NO 3 –

Al 2 (SO 4) 3 → 2Al 3+ +3SO 4 2– .

Кислые соли (гидросоли) – электролиты, содержащие в анионе водород, способный отщепляться в виде иона водорода Н + . Кислые соли рассматривают как продукт, получающийся из многоосновных кислот, в которых не все атомы водорода замещены на металл. Диссоциация кислых солей происходит по ступеням, например:

KHCO 3 K + + HCO 3 – (первая ступень)

При диссоциации кислот роль катионов играют ионы водорода (H +), других катионов при диссоциации кислот не образуется:

HF ↔ H + + F - HNO 3 ↔ H + + NO 3 -

Именно ионы водорода придают кислотам их характерные свойства: кислый вкус, окрашивание индикатора в красный цвет и проч.

Отрицательные ионы (анионы), отщепляемые от молекулы кислоты, составляеют кислотный остаток .

Одной из характеристик диссоциации кислот является их оснОвность - число ионов водорода, содержащихся в молекуле кислоты, которые могут образоываваться при диссоциации:

  • одноосновные кислоты: HCl, HF, HNO 3 ;
  • двухосновные кислоты: H 2 SO 4 , H 2 CO 3 ;
  • трехосновные кислоты: H 3 PO 4 .

Процесс отщепления катионов водорода в многоосновных кислотах происходит ступенчато: сначала отщепляется один ион водорода, затем другой (третий).

Ступенчатая диссоциация двухосновной кислоты:

H 2 SO 4 ↔ H + + HSO 4 - HSO 4 - ↔ H + + HSO 4 2-

Ступенчатая диссоциация трехосновной кислоты:

H 3 PO 4 ↔ H + + H 2 PO 4 - H 2 PO 4 - ↔ H + + HPO 4 2- HPO 4 2- ↔ H + + PO 4 3-

При диссоциации многоосновных кислот самая высокая степень диссоциации приходится на первую ступень. Например, при диссоциации фосфорной кислоты степень диссоциации первой ступени равняется 27%; второй - 0,15%; третьей - 0,005%.

Диссоциация оснований

При диссоциации оснований роль анионов играют гидроксид-ионы (ОH -), других анионов при диссоциации оснований не образуется:

NaOH ↔ Na + + OH -

Кислотность основания определяется кол-вом гидроксид-ионов, образующихся при диссоциации одной молекулы основания:

  • однокислотные основания - KOH, NaOH;
  • двухкислотные основания - Ca(OH) 2 ;
  • трехкислотные основания - Al(OH) 3 .

Многокислотные основания диссоциируют, по аналогии с кислотами, также ступенчато - на каждом этапе отщепляется по одному гидроксид-иону:

Некоторые вещества, в зависимости от условий, могут выступать, как в роли кислот (диссоциировать с отщеплением катионов водорода), так и в роли оснований (диссоциировать с отщеплением гидроксид-ионов). Такие вещества называются амфотерными (см. Кислотно-основные реакции).

Диссоциация Zn(OH) 2 , как основания:

Zn(OH) 2 ↔ ZnOH + + OH - ZnOH + ↔ Zn 2+ + OH -

Диссоциация Zn(OH) 2 , как кислоты:

Zn(OH) 2 + 2H 2 O ↔ 2H + + 2-

Диссоциация солей

Соли диссоциируют в воде на анионы кислотных остатков и катионы металлов (или других соединений).

Классификация диссоциации солей:

  • Нормальные (средние) соли получаются полным одновременным замещением всех атомов водорода в кислоте на атомы металла - это сильные электролиты, полностью диссоциируют в воде с образованием катоинов металла и однокислотного остатка: NaNO 3 , Fe 2 (SO 4) 3 , K 3 PO 4 .
  • Кислые соли содержат в своем составе кроме атомов металла и кислотного остатка, еще один (несколько) атомов водорода - диссоциируют ступенчато с образованием катионов металла, анионов кислотного остатка и катиона водорода: NaHCO 3 , KH 2 PO 4 , NaH 2 PO 4 .
  • Основные соли содержат в своем составе кроме атомов металла и кислотного остатка, еще одну (несколько) гидроксильных групп - диссоциируют с образованием катионов металла, анионов кислотного остатка и гидроксид-иона: (CuOH) 2 CO 3 , Mg(OH)Cl.
  • Двойные соли получаются одновременным замещением атомов водорода в кислоте на атомы различных металлов: KAl(SO 4) 2 .
  • Смешанные соли диссоциируют на катионы металла и анионы нескольких кислотных остатков: CaClBr.
Диссоциация нормальной соли: K 3 PO 4 ↔ 3K + + PO 4 3- Диссоциация кислой соли: NaHCO 3 ↔ Na + + HCO 3 - HCO 3 - ↔ H+ + CO 3 2- Диссоциация основной соли: Mg(OH)Cl ↔ Mg(OH) + + Cl - Mg(OH) + ↔ Mg 2+ + OH - Диссоциация двойной соли: KAl(SO 4) 2 ↔ K + + Al 3+ + 2SO 4 2- Диссоциация смешанной соли: CaClBr ↔ Ca 2+ + Cl - + Br -

Как известно из курса физики, электрическим током называют упорядоченное движение заряженных частиц. В случае металлов, электропроводность обеспечивается подвижными электронами в кристалле, слабо связанными c ядрами атомов, что позволяет им направленно двигаться под действием разности потенциалов.

Кроме металлов, существуют также вещества растворы или расплавы которых проводят электрический ток. Такие вещества называют электролитами.

Электролиты — вещества, расплавы или водные растворы которых проводят электрический ток.

Но за счет чего обеспечивается электрическая проводимость расплавов и растворов электролитов?

Рассмотрим такое соединение как хлорида натрия. Это вещество характеризуется ионным строением. В узлах его структурной решетки находятся попеременно в шахматном порядке катионы натрия и анионы хлора:

Как можно видеть, заряженные частицы, которые могли бы быть обеспечивать электрическую проводимость присутствуют, но статичны, т.е. неподвижны в узлах решетки. Поэтому, чтобы электрический ток смог протекать через хлорид натрия, нужно еще и обеспечить «подвижность» ионов, из которых он состоит.

Как известно, для одного и того же вещества наиболее подвижны составляющие его частицы в том случае, когда он находится в жидком, а не в твердом агрегатном состоянии. Поэтому для того, чтобы хлорид натрия смог проводить электрический ток, его необходимо расплавить, т.е. превратить в жидкость. В результате сообщения энергии кристаллу хлорида натрия в виде большого количества теплоты частично разрушаются ионные связи Na + Cl − , т.е. происходит диссоциация на свободные подвижные ионы:

Na + Cl − ↔ Na + + Cl −

Однако, добиться диссоциации хлорида натрия можно не только его плавлением, но также и его растворением в воде. Но каким образом, это становится возможным? Ведь для того чтобы произошло разрушение кристаллической решетки требуется сообщить ей энергию, что и происходило при расплавлении. Откуда же берется энергия на разрушение решетки в случае растворения?

При помещении кристалла NaCl в воду его поверхность подвергается «облепливанию» молекулами воды или гидратации , в результате которой, ионам в структурной решетке сообщается энергия, достаточная для выделения из структурной решетки и «отправления в свободное плавание» в «оболочке» из молекул воды:

или более упрощенно:

NaCl ↔ Na + + Cl − (участвующие в гидратации кристалла NaCl и ионов молекулы воды не записываются)

Если энергия, выделяющаяся при гидратации кристалла, меньше энергии кристаллической решетки, то его растворение и диссоциация становятся невозможными. Например, поверхность кристалла сульфата бария, помещенного в водную среду, также покрывается молекулами воды, но выделяющаяся в результате этого энергия недостаточна отрыва ионов Ba 2+ и SO 4 2- из кристаллической решетки и, как следствие, становится невозможно его растворение (на самом деле возможно, но в крайне малой степени, т.к. абсолютно нерастворимых веществ не бывает).

Аналогичным образом диссоциация осуществляется также гидроксидами металлов. Например:

NaOH = Na + + OH −

Помимо веществ ионного строения, электролитически диссоциировать способны также и некоторые вещества молекулярного строения с ковалентным полярным типом связи, а именно кислоты. Как и в случае ионных соединений, причина образования ионов из электронейтральных молекул кроется в их гидратации. Существование гидратированных ионов энергетически более выгодно, чем существование гидратированных молекул. Например, диссоциация молекулы соляной кислоты выглядит примерно следующим образом:

Гидратация катионов водорода настолько сильна, что можно говорить не просто о катионе водорода, окружённом молекулами воды (как это было с катионами натрия), а о полноценной частице – ионе гидроксония H 3 O + , содержащей три полноценные ковалентные связи H-О, одна из которых образована по донорно-акцепторному механизму. Таким образом, уравнение диссоциации соляной кислоты правильнее записывать так:

H 2 O + HCl = H 3 O + + Cl −

Тем не менее, даже в этом случае, чаще всего, уравнение диссоциации соляной кислоты, впрочем, как и любой другой, записывают, игнорируя явное участие в диссоциации кислот молекул воды.

HCl = H + + Cl −

Диссоциация многоосновных кислот протекает ступенчато, например:

H 3 PO 4 ↔ H + + H 2 PO 4 −

H 2 PO 4 − ↔ HPO 4 2- + H +

HPO 4 2- ↔ PO 4 3- + H +

Таким образом, как мы уже выяснили, к электролитам относят: соли, кислоты и основания.

Для описания способности электролитов к электролитической диссоциации используют величину, которая называется степенью диссоциации (α) .

Степень диссоциации – отношение числа продиссоциировавших частиц, к общему числу растворенных частиц.

По степени диссоциации электролиты делят на сильные (α> 30%), средней силы (30%> α> 3%) и слабые (α <3%):

Вещества, которые не являются ни кислотами, ни солями, ни гидроксидами, считаются неэлектролитами . К неэлектролитам, например, относятся простые вещества, оксиды, органические вещества (спирты, углеводороды, углеводы, хлорпроизводные углеводородов и т.д.).

Сильные электролиты диссоциируют практически необратимо и в их водных растворах содержание исходных молекул крайне мало:

KOH → K + + OH −

Na 2 SO 4 → 2Na + + SO 4 2- .